Signal and image processing
Source:vignettes/signal-and-image-processing.Rmd
signal-and-image-processing.RmdThis vignette is adapted from the official Armadillo documentation.
One-dimensional convolution
The conv() function performs a one-dimensional
convolution of two vectors. The orientation of the result vector is the
same as the orientation of the first input vector.
Usage:
The shape argument is optional and can be one of the
following:
-
"full": return the full convolution (default setting), with the size equal tox.n_elem + y.n_elem - 1. -
"same": return the central part of the convolution, with the same size as vectorx.
The convolution operation is also equivalent to finite impulse response (FIR) filtering.
Two-dimensional convolution
The conv2() function performs a two-dimensional
convolution of two matrices. The orientation of the result matrix is the
same as the orientation of the first input matrix.
Usage:
The shape argument is optional and can be one of the
following:
-
"full": return the full convolution (default setting), with the size equal tosize(A) + size(B) - 1. -
"same": return the central part of the convolution, with the same size as matrixA.
One-dimensional Fast Fourier Transform
The fft() function computes the fast Fourier transform
(FFT) of a vector or matrix. The function returns a complex matrix.
Similarly, ifft() computes the inverse fast Fourier
transform (IFFT) of a complex matrix.
The transform is done on each column vector of the input matrix.
Usage:
// real or complex
cx_vec Y = fft(X);
cx_vec Y = fft(X, n);
// complex only
cx_mat Z = ifft(cx_mat Y);
cx_mat Z = ifft(cx_mat Y, n);The optional n argument specifies the transform
length:
- If
nis larger than the length of the input vector, a zero-padded version of the vector is used. - If
nis smaller than the length of the input vector, only the firstnelements of the vector are used.
Caveats
- The transform is fastest when the transform length is a power of 2 (\(2^k,\: k = 1, 2, 3, \ldots\)).
- By default, the function uses an internal FFT algorithm based on KISS FFT. With vendoring, it is possible to use the FFTW3 library for faster execution by modifying the cpp11armadillo header to:
Examples
[[cpp11::register]] list fft1_(const doubles& x) {
vec a = as_Col(x);
cx_vec b = fft(a);
cx_vec c = ifft(b);
writable::list out(2);
writable::list out2(2);
writable::list out3(2);
out2[0] = as_doubles(real(b));
out2[1] = as_doubles(imag(b));
out3[0] = as_doubles(real(c));
out3[1] = as_doubles(imag(c));
out[0] = out2;
out[1] = out3;
return out;
}Two-dimensional Fast Fourier Transform
The fft2() function computes the two-dimensional fast
Fourier transform (FFT) of a matrix. The function returns a complex
matrix.
Similarly, ifft2() computes the inverse fast Fourier
transform (IFFT) of a complex matrix.
Usage:
// real or complex
cx_mat Y = fft2(mat X);
cx_mat Y = fft2(mat X, int n_rows, int n_cols);
// complex only
cx_mat Z = ifft2(cx_mat Y);
cx_mat Z = ifft2(cx_mat Y, int n_rows, int n_cols);The optional n_rows and n_cols arguments
specify the transform size:
- If
n_rowsandn_colsare larger than the size of the input matrix, a zero-padded version of the matrix is used. - If
n_rowsandn_colsare smaller than the size of the input matrix, only the firstn_rowsandn_colselements of the matrix are used.
Caveats
- The implementation of the 2D transform in this version is preliminary.
- The transform is fastest when both
n_rowsandn_colsare a power of 2 (\(2^k,\: k = 1, 2, 3, \ldots\)). - By default, the function uses an internal FFT algorithm based on KISS FFT. With vendoring, it is possible to use the FFTW3 library for faster execution by modifying the cpp11armadillo header to:
Examples
[[cpp11::register]] list fft2_(const doubles_matrix<>& x) {
mat a = as_mat(x);
cx_mat b = fft2(a);
cx_mat c = ifft2(b);
writable::list out(2);
writable::list out2(2);
writable::list out3(2);
out2[0] = as_doubles(real(b));
out2[1] = as_doubles(imag(b));
out3[0] = as_doubles(real(c));
out3[1] = as_doubles(imag(c));
out[0] = out2;
out[1] = out3;
return out;
}One-dimensional interpolation
The interp1() function performs one-dimensional
interpolation of a function specified by vectors X and
Y. The function generates a vector YI that
contains interpolated values at locations XI.
Usage:
vec interp1(X, Y, XI, YI);
vec interp1(X, Y, XI, YI, method);
vec interp1(X, Y, XI, YI, method, extrapolation_value);The method argument is optional and can be one of the
following:
-
"nearest": interpolate using single nearest neighbour. -
"linear": linear interpolation between two nearest neighbours (default setting). -
"*nearest": as per"nearest", but faster by assuming thatXandXIare monotonically increasing. -
"*linear": as per"linear", but faster by assuming thatXandXIare monotonically increasing.
If a location in XI is outside the domain of
X, the corresponding value in YI is set to
extrapolation_value.
The extrapolation_value argument is optional; by
default, it is datum::nan (not-a-number).
Examples
[[cpp11::register]] doubles interp1_(const int& n) {
vec x = linspace<vec>(0, 3, n);
vec y = square(x);
vec xx = linspace<vec>(0, 3, 2 * n);
vec yy;
interp1(x, y, xx, yy); // use linear interpolation by default
interp1(x, y, xx, yy, "*linear"); // faster than "linear"
interp1(x, y, xx, yy, "nearest");
return as_doubles(yy);
}Two-dimensional interpolation
The interp2() function performs two-dimensional
interpolation of a function specified by matrix Z with
coordinates given by vectors X and Y. The
function generates a matrix ZI that contains interpolated
values at the coordinates given by vectors XI and
YI.
Usage:
mat interp2(X, Y, Z, XI, YI, ZI);
mat interp2(X, Y, Z, XI, YI, ZI, method);
mat interp2(X, Y, Z, XI, YI, ZI, method, extrapolation_value);The method argument is optional and can be one of the
following:
-
"nearest": interpolate using nearest neighbours. -
"linear": linear interpolation between nearest neighbours (default setting).
If a coordinate in the 2D grid specified by (XI, YI) is
outside the domain of the 2D grid specified by (X, Y), the
corresponding value in ZI is set to
extrapolation_value.
The extrapolation_value argument is optional; by
default, it is datum::nan (not-a-number).
Examples
[[cpp11::register]] doubles_matrix<> interp2_(const int& n) {
mat Z(n, n, fill::randu);
vec X = regspace(1, Z.n_cols); // X = horizontal spacing
vec Y = regspace(1, Z.n_rows); // Y = vertical spacing
vec XI = regspace(X.min(), 1.0/2.0, X.max()); // magnify by approx 2
vec YI = regspace(Y.min(), 1.0/3.0, Y.max()); // magnify by approx 3
mat ZI;
interp2(X, Y, Z, XI, YI, ZI); // use linear interpolation by default
return as_doubles_matrix(ZI);
}Find polynomial coefficients for data fitting
The polyfit() function finds the polynomial coefficients
for data fitting. The function models a 1D function specified by vectors
X and Y as a polynomial of order
N and stores the polynomial coefficients in a column vector
P.
The given function is modelled as:
\[ y = p_0 x^N + p_1 x^{N-1} + p_2 x^{N-2} + \ldots + p_{N-1} x^1 + p_N \]
where \(p_i\) is the \(i\)-th polynomial coefficient. The coefficients are selected to minimise the overall error of the fit (least squares).
The column vector P has \(N+1\) coefficients.
N must be smaller than the number of elements in
X.
Usage:
If the polynomial coefficients cannot be found:
-
P = polyfit(X, Y, N)resetsPand returns an error. -
polyfit(P, X, Y, N)resetsPand returns aboolset tofalsewithout an error.
Evaluate polynomial
The polyval() function evaluates a polynomial. Given a
vector P of polynomial coefficients and a vector
X containing the independent values of a 1D function, the
function generates a vector Y that contains the
corresponding dependent values.
For each x value in vector X, the
corresponding y value in vector Y is generated
using:
\[ y = p_0 x^N + p_1 x^{N-1} + p_2 x^{N-2} + \ldots + p_{N-1} x^1 + p_N \]
where \(p_i\) is the \(i\)-th polynomial coefficient in vector
P.
P must contain polynomial coefficients in descending
powers (e.g., generated by the polyfit() function).
Usage: