The provided broom
methods do the following:
augment
: Takes the input data and adds additional columns with the fitted values and residuals.glance
: Extracts the deviance, null deviance, and the number of observations.`tidy
: Extracts the estimated coefficients and their standard errors.
Usage
# S3 method for class 'feglm'
augment(x, newdata = NULL, ...)
# S3 method for class 'felm'
augment(x, newdata = NULL, ...)
# S3 method for class 'feglm'
glance(x, ...)
# S3 method for class 'felm'
glance(x, ...)
# S3 method for class 'feglm'
tidy(x, conf_int = FALSE, conf_level = 0.95, ...)
# S3 method for class 'felm'
tidy(x, conf_int = FALSE, conf_level = 0.95, ...)
Examples
mod <- fepoisson(mpg ~ wt | cyl, mtcars)
broom::augment(mod)
#> Registered S3 methods overwritten by 'broom':
#> method from
#> augment.felm capybara
#> glance.felm capybara
#> tidy.felm capybara
#> # A tibble: 32 × 5
#> mpg wt cyl .fitted .residuals
#> <dbl> <dbl> <fct> <dbl> <dbl>
#> 1 21 2.62 6 21.6 -0.552
#> 2 21 2.88 6 20.6 0.415
#> 3 22.8 2.32 4 26.4 -3.58
#> 4 21.4 3.22 6 19.4 2.04
#> 5 18.7 3.44 8 16.6 2.14
#> 6 18.1 3.46 6 18.5 -0.429
#> 7 14.3 3.57 8 16.2 -1.88
#> 8 24.4 3.19 4 22.6 1.85
#> 9 22.8 3.15 4 22.7 0.0828
#> 10 19.2 3.44 6 18.6 0.604
#> # ℹ 22 more rows
broom::glance(mod)
#> # A tibble: 1 × 6
#> deviance null_deviance nobs_full nobs_na nobs_pc nobs
#> * <dbl> <dbl> <int> <int> <int> <int>
#> 1 7.52 54.5 32 0 0 32
broom::tidy(mod)
#> # A tibble: 1 × 4
#> estimate std.error statistic p.value
#> * <dbl> <dbl> <dbl> <dbl>
#> 1 -0.180 0.0716 -2.51 0.0120