Plotting with ukmaps v0.0.4 and ggplot2

This is the first proper version of UK Maps.
Author

Mauricio β€œPachÑ” Vargas S.

Published

August 30, 2025

Because of delays with my scholarship payment, if this post is useful to you I kindly ask a minimal donation on Buy Me a Coffee that shall be used to continue my Open Source efforts. If you need an R package or Shiny dashboard for your team, you can email me or inquiry on Fiverr. The full explanation is here: A Personal Message from an Open Source Contributor

You can send me questions for the blog using this form and subscribe to receive an email when there is a new post.

Examples

Yes/No map of London administrative areas:

if (!require(remotes)) install.packages("remotes")
if (!require(ukmaps)) remotes::install_github("pachadotdev/ukmaps")

── R CMD build ─────────────────────────────────────────────────────────────────
* checking for file β€˜/tmp/RtmpAfJKmO/remotes1bf76f146e9df9/pachadotdev-ukmaps-458273a/DESCRIPTION’ ... OK
* preparing β€˜ukmaps’:
* checking DESCRIPTION meta-information ... OK
* checking for LF line-endings in source and make files and shell scripts
* checking for empty or unneeded directories
* building β€˜ukmaps_0.0.4.tar.gz’
if (!require(dplyr)) install.packages("dplyr")
if (!require(ggplot2)) install.packages("ggplot2")

library(ukmaps)
library(dplyr)
library(ggplot2)

d <- boundaries %>%
  mutate(
    region_name = if_else(is.na(region_name), "Notr Available", region_name),
    is_london = if_else(region_name == "London", "Yes", "No")
  )

pal <- c("#165976", "#d04e66")

ggplot(d) + 
  geom_sf(aes(fill = is_london, geometry = geometry), color = "white", linewidth = 0) +
  scale_fill_manual(values = pal, name = "Is this London?") +
  labs(title = "Map of England with Administrative Boundaries") +
  theme_minimal(base_size = 13)

Which part of London is Barnet?

d <- boundaries %>%
  filter(region_name == "London") %>%
  mutate(is_barnet = if_else(lad_name == "Barnet", "Yes", "No"))

pal <- c("#165976", "#d04e66")

ggplot(d) + 
  geom_sf(aes(fill = is_barnet, geometry = geometry), color = "white") +
  scale_fill_manual(values = pal, name = "Is this Barnet?") +
  labs(title = "Which part of London is Barnet?") +
  theme_minimal(base_size = 13)

Which part of London is Golders Green?

d <- boundaries %>%
  filter(region_name == "London") %>%
  mutate(
    is_golders_green = if_else(ward_name == "Golders Green", "Yes", "No")
  )

pal <- c("#165976", "#d04e66")

ggplot(d) + 
  geom_sf(aes(fill = is_golders_green, geometry = geometry), color = "white") +
  scale_fill_manual(values = pal, name = "Is this Golders Green?") +
  labs(title = "Which part of London is Golders Green?") +
  theme_minimal(base_size = 13)

The following maps use functions that aggregate the dataset to keep the package size small.

Country level map of the UK:

pal <- c("#165976", "#365158", "#d04e66", "#ffd613")

# country() aggregates the map to country level
ggplot(country()) + 
  geom_sf(aes(fill = country_name, geometry = geometry), color = "white") +
  scale_fill_manual(values = pal, name = "Country") +
  labs(title = "Map of England with Country Boundaries") +
  theme_minimal(base_size = 13)

How many R’s in each county name?

# number of R's in county names
d <- counties() %>%
  mutate(n = stringr::str_count(county_name, "[rR]"))

# region() aggregates the map to country level
ggplot(d) + 
  geom_sf(aes(fill = n, geometry = geometry), color = "white") +
  scale_fill_gradient(low = "#165976", high = "#d04e66", name = "R's",
                      breaks = seq(0, max(d$n), by = 1)) +
  labs(title = "How many R's in each county name?") +
  theme_minimal(base_size = 13)

How many R’s in each LAD name? Local Authority Districts (LAD) (Local Government District (LGD) in Northern Ireland)

d <- lads() %>%
  mutate(n = stringr::str_count(lad_name, "[rR]"))

ggplot(d) + 
  geom_sf(aes(fill = n, geometry = geometry), color = "white") +
  scale_fill_gradient(low = "#165976", high = "#d04e66", name = "R's",
                      breaks = seq(0, max(d$n), by = 1)) +
  labs(title = "How many R's in each LAD name?") +
  theme_minimal(base_size = 13)

Now an example with real data for the election results (thanks to Dr. Catherine Moez for sharing the data):

library(sf)
library(tintin)

# filter the map to England and Wales, and aggregate to LAD level
# similar to the lads() function for the UK
d <- boundaries %>%
  filter(country_name %in% c("England", "Wales")) %>%
  group_by(lad_code, lad_name) %>%
  summarise(geometry = st_union(geometry), .groups = "drop")

# Add the election results to the map
d <- d %>%
  left_join(election_results) %>%
  group_by(lad_name) %>%
  filter(election_year == max(election_year, na.rm = TRUE)) %>%
  ungroup()

# Expand LADs to all years, so all polygons appear in every year
all_years <- sort(unique(election_results$election_year))
all_lads <- d %>% select(lad_code, lad_name, geometry)

d <- tidyr::expand_grid(all_lads, election_year = all_years) %>%
    left_join(election_results, by = c("lad_name", "election_year"))

ggplot(d) + 
  geom_sf(aes(fill = top_party, geometry = geometry), color = "white") +
  # scale_fill_discrete(name = "Top Party") +
  scale_fill_manual(values = tintin_clrs(
      n = length(unique(d$top_party)),
      option = "cigars of the pharaoh"),
    na.value = "gray80",
    name = "Top Party") +
  labs(title = "UK Local Authority Districts - Top Party by Year",
    subtitle = "Data: Dr. Catherine Moez") +
  facet_wrap(~ election_year) +
  theme_minimal(base_size = 13) +
  theme(
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    panel.grid = element_blank(),
    panel.background = element_rect(color = "black", fill = NA, linewidth = 2),
    strip.background = element_rect(fill = "#012169", color = "black"),
    strip.text = element_text(face = "bold", color = "white")
  )