Covariance matrix for the estimator of the structural parameters
from objects returned by feglm
. The covariance is computed
from the hessian, the scores, or a combination of both after convergence.
Arguments
- object
an object of class
"feglm"
.- type
the type of covariance estimate required.
"hessian"
refers to the inverse of the negative expected hessian after convergence and is the default option."outer.product"
is the outer-product-of-the-gradient estimator."sandwich"
is the sandwich estimator (sometimes also referred as robust estimator), and"clustered"
computes a clustered covariance matrix given some cluster variables.- ...
additional arguments.
References
Cameron, C., J. Gelbach, and D. Miller (2011). "Robust Inference With Multiway Clustering". Journal of Business & Economic Statistics 29(2).
Examples
# same as the example in feglm but extracting the covariance matrix
# subset trade flows to avoid fitting time warnings during check
set.seed(123)
trade_2006 <- trade_panel[trade_panel$year == 2006, ]
trade_2006 <- trade_2006[sample(nrow(trade_2006), 500), ]
mod <- fepoisson(
trade ~ log_dist + lang + cntg + clny | exp_year + imp_year | pair,
trade_2006
)
round(vcov(mod, type = "clustered"), 5)
#> log_dist lang cntg clny
#> log_dist 1.67116 -1.67416 2.12613 0.63717
#> lang -1.67416 15.33709 -4.80656 -3.67469
#> cntg 2.12613 -4.80656 19.28607 1.86277
#> clny 0.63717 -3.67469 1.86277 5.02271